Physicists
have presented a new method to predict what really lies inside the event
horizon of a black hole, and it can give us more precise information about
their mysterious internal structures. Studying black holes is mainly like doing
science backwards. You are familiar with the scientific method, observe,
analyze, experiment and hypothesize. But when it comes to black holes, we
initiate with the hypotheses and mathematics, and then try to work out how to
detect what we think is there.

But there’s
seems to be a one big problem with the current method, as a group of
astronomers from Johns Hopkins and Towson University point out - physicists
have been building their opinion of the internal structure of a black hole
founded on how certain mathematical coordinates fit together.

Liable on
which coordinates you select, and how they’re observed from your position as an
observer, you’ll possibly get very diverse outcomes from someone who picks a
different set of coordinates from another perspective.

The best
example for this is our maps and atlases that we have made when it comes to our
view of our own planet, because we’ve been signifying certain landmasses
subjectively, rather than relatively.

Astronomers argue that:

"Any such coordinate choice necessarily results in a distorted view, just as the choice of projection distorts a map of the Earth. The truest way to depict the properties of a black hole is through quantities that are coordinate-invariant."

The team,
led by physicist Kielan Wilcomb from Towson University, recommends that in
order to find out what’s inside a black hole, you must concentrate entirely on
mathematical quantities called invariants, which have the similar value for any
choice of coordinates.

At the 228th
conference of the American Astronomical Society in San Diego this year,
the group of astronomers stated that there are 17 such quantities linked to the
curvature of space-time that can be used to observer and study black hole
interiors. Because of certain mathematical relationships among them, they say
only five are actually independent.

The team’s
research has been published on the pre-press website arXiv.org ahead of
peer-review, so other physicists can use these five invariants to try to build
the inside of a hypothetical black hole. According to Wilcomb and co. say they
tried it out themselves; they actually saw something really awesome:

"We compute and plot all the independent curvature invariants of rotating, charged black holes for the first time, revealing a landscape that is much more beautiful and complex than usually thought."

Now what we
need to do now is to just figure out if we can get to another universe through
a black hole, so we can all plot our parallel universe vacations.

## Post A Comment:

## 0 comments: